Fungi-sensitized individuals have unique profiles where Alt a 1 dominates promoting response to grass, ragweed and cat allergens

Author:

Kalyniuk Viktoriia,Rodinkova Victoria,Yuriev Serhii,Mokin Vitalii,Losenko Arsen,Kryvopustova Mariia,Zabolotna Diana,Gogunska Inna

Abstract

IntroductionThe aim of our work was to determine comprehensively the sensitization profile of patients hypersensitive to fungal allergenic components in the Ukrainian population, identifying features of their co-sensitization to allergens of other groups and establishing potential relationships between causative allergens and their ability to provoke this hypersensitivity.MethodsA set of programs was developed using Python and R programming languages, implementing the K-means++ clustering method. Bayesian networks were constructed based on the created clusters, allowing for the assessment of the probabilistic interplay of allergen molecules in the sensitization process of patients.Results and discussionIt was found that patients sensitive to fungi are polysensitized, with 84.77% of them having unique allergological profiles, comprising from 2 to several dozen allergens from different groups. The immune response to Alt a 1 may act as the primary trigger for sensitization to other allergens and may contribute to a high probability of developing sensitivity to grasses (primarily to Phl p 2), ragweed extract, and the Amb a 1 pectate lyase, as well as to pectate lyase Cry j 1 and cat allergen Fel d 1. Individuals polysensitized to molecular components of fungi were often sensitive to such cross-reactive molecules as lipocalins Fel d 4 and Can f 6, as well. Sensitivity to Ambrosia extract which dominated in the development of sensitization to ragweed pollen indicating the importance of different allergenic components of this plant's pollen. This hypothesis, along with the assumption that Phl p 2 may be the main trigger for sensitivity to grasses in patients with Alternaria allergy, requires further clinical investigation.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3