Exploring opportunities for AI supported medication error categorization: A brief report in human machine collaboration

Author:

Fong Allan,Bonk Christopher,Vasilchenko Varvara,De Suranjan,Kovich Douglas,Wyeth Jo

Abstract

Understanding and mitigating medication errors is critical for ensuring patient safety and improving patient care. Correctly identifying medication errors in the United States Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) reports can be difficult because of the complexities of medication error concepts. We took a user-centered design approach to support the medication error categorization workflow process with artificial intelligence (AI). We developed machine learning models to categorize medication error terms. The average F1-score, precision, recall, and area under the precision recall curve for 18 Medical Dictionary for Regulatory Activities (MedDRA) Lower Level Term (LLT) relating to medication errors were 0.88, 0.92. 0.85, and 0.83 respectively. We developed a framework to help evaluate opportunities for artificial intelligence integration in the medication error categorization workflow. The framework has four attributes: technical deployment, process rigidity, AI assistance, and frequency. We used the framework to compare two AI integration opportunities and concluded that the quality assurance (QA) opportunity to be a more feasible initial option for AI integration. We then extended these insights into the development and user testing of a prototype application. The user testing identified the highlighting and commenting capabilities of the application to be more useful and sliders and similar report suggestions to be less useful. This suggested that different AI interactions with human highlighting should be explored. While the medication error quality assurance prototype application was developed for supporting the review of direct FAERS reports, this approach can be extended to assist in the workflow for all FAERS reports.

Funder

U.S. Food and Drug Administration

Publisher

Frontiers Media SA

Reference32 articles.

1. Can natural language processing improve the efficiency of vaccine adverse event report review?;Baer;Methods Inf. Med.,2016

2. Artificial intelligence” for pharmacovigilance: Ready for prime time?;Ball;Drug Saf.,2022

3. An empirical evaluation of the system usability scale;Bangor;Int. J. Hum. Comput. Interact.,2008

4. Determining what individual SUS scores mean: Adding an adjective rating scale;Bangor;J. usability Stud.,2009

5. Artificial intelligence and machine learning for safe medicines;Bate,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3