Putting external validation performance of major bleeding risk models into context

Author:

Blacketer Clair,Reps Jenna M.,Wang Lu,Ryan Patrick B.,Yuan Zhong

Abstract

When developing predictive models, model simplicity and performance often need to be balanced. We propose a novel methodology to put the performance of bleeding risk prediction models ORBIT, ATRIA, HAS-BLED, CHADS2, and CHA2DS2-VASc into perspective. Instead of comparing the existing models’ performance against the 0.5–1 AUROC scale, we suggest estimating a prediction task specific AUROC scale, lower bound AUROC (lbAUROC) and upper bound AUROC (ubAUROC), to help assess the balance between model simplicity and performance and determine whether more complex models could significantly improve the ability to predict the outcome. We validate the existing bleeding risk prediction models by applying them to a cohort of new users of warfarin and a cohort of new users of direct oral anticoagulants (DOACs) separately, across a set of four observational databases. Then, we develop the lbAUROC-ubAUROC scale by using the validation data to train regularized logistic regression models. The internal validation AUROC of the model that includes only age and gender variables was used to estimate the lbAUROC. The internal validation AUROC of the model that includes thousands of candidate variables was used to estimate the ubAUROC. The age and gender only models achieved AUROCs between 0.50 and 0.56 (lower bound) and the large-scale models achieved AUROCs between 0.67 and 0.72 and between 0.70 and 0.77 (upper bound) within the target cohorts of warfarin new users and DOACs new users, respectively. The AUROC of existing bleeding risk prediction models fall between the upper-bound and lower-bound of predictive models. Our study showed that this context of the predictability of the outcome is essential when evaluating risk prediction models to be administered in actual practice.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3