Evaluation and visualization of a rectangle’s gravity on its surface, and on spheres inside, outside, or intersecting it

Author:

Hu Weiduo,Fu Tao,Wang Yue

Abstract

For convenient comparison and clear physical meaning, the gravity on the surface of a homogeneous cube and on spheres inside, outside, and intersecting about it is calculated by polyhedral or harmonic expansion methods. In addition, the gravity coefficients of a rectangle’s spherical harmonics are both derived analytically and evaluated numerically, where only five terms are nontrivial up to the order of 4, which is somewhat unexpected when we first obtained them. There are some similarities of these coefficients to an ellipsoid for the terms C20,C22,C42, but they are much different for the terms C40,C44. Thence, a few special gravity characteristics are here revealed or visualized. For example, it is shown as expected that the maximum gravity appears at the sphere intersecting the cube, but maximum surface gravity at the center of the mid-plane of a rectangle’s surface is different from the gravity on an ellipsoid at the end of its short axis. Based on these results, an orbit around a cube is integrated by a polyhedral method, and its secular motion analysis by averaging theory is investigated where the numerical and analytic results fit very well. Finally, a few special trajectories on a surface plane of a cube are simulated; the physical meaning is quite clear, and some insights are shown, such as why a natural celestial body in the shape of a rectangle with sharp corners is rarely found due to its surface gravity distribution. All gravity calculations are visualized on 3D figures both for cubes or rectangles. Additionally, examples of an asteroid and an ellipsoid are shown so that the techniques discussed here can be adopted to directly analyzing the gravity of other shapes.

Publisher

Frontiers Media SA

Reference34 articles.

1. Gravitational potential harmonics from the shape of an homogeneous body;Balmino;Celest. Mech. Dyn. Astronomy,1994

2. Gravitational attraction of a rectangular parallelepiped;Banerjee;Geophysics,1977

3. The natural history of oumuamua;Bannister;Nat. Astron.,2019

4. The gravitational field of a cube;Chappel;Class. Phys.,2012

5. Classification of ellipsoids by shape and surface gravity;Dobrovolskis;Icarus,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3