Transport Properties of Critical Sulfur Hexafluoride From Multiscale Analysis of Density Fluctuations

Author:

Oprisan Ana,Morgado Dereck,Dorf David,Zoppelt Seth,Oprisan Sorinel A.,Hahn Inseob,Garrabos Yves,Lecoutre-Chabot Carole,Beysens Daniel

Abstract

Density fluctuations near critical points have a wide range of sizes limited only by the boundaries of the enclosing container. How would a fluctuating image near the critical point look if we could break it into disjoint spatial scales, like decomposing white light into narrow-band, monochromatic waves? What are the scaling laws governing each spatial scale? How are the relaxation times of fluctuations at each spatial scale related to the dynamics of fluctuations in the original image? Fluctuations near the critical point of pure fluids lead to different patterns of phase separation, which has a significant influence on the materials’ properties. Due to the diverging compressibility of pure fluids near the critical temperature, the critical phase collapses under its weight on Earth. It limits both the spatial extent of fluctuations and their duration. In microgravity, the buoyancy and convection are suppressed, and the critical state can be observed much closer to the critical point for a more extended period. Local density fluctuations induce light intensity fluctuations (the so-called “critical opalescence”), which we recorded for a sulfur hexafluoride (SF6) sample near the critical point in microgravity using the ALI (Alice Like Instrumentation insert) of the DECLIC (Dispositif pour l’Etude de la Croissance et des Liquides Critiques) facility on the International Space Station (ISS). From the very short (approximately 173 s total recording) data set very near, within 200 μK, the critical temperature, we determined the effective diffusion coefficient for fluctuations of different sizes. For transient and non-stationary data recorded very near the critical point immediately after a thermal quench that steps through critical temperature, we separated fluctuations of various sizes from the original images using the Bidimensional Empirical Mode Decomposition (BEMD) technique. Orthogonal and stationary Intrinsic Mode Function (IMF) images were analyzed using the Fourier-based Dynamic Differential Microscopy (DDM) method to extract the correlation time of fluctuations. We found that a single power-law exponent represented each IMF’s structure factor. Additionally, each Intermediate Scattering Function (ISF) was determined by fluctuations’ unique relaxation time constant. We found that the correlation time of fluctuations increases with IMF’s order, which shows that small size fluctuations have the shortest correlation time. Estimating thermophysical properties from short data sets affected by transient phenomena is possible within the BEMD framework

Publisher

Frontiers Media SA

Subject

General Materials Science

Reference101 articles.

1. Fractal Geometry of Critical Systems;Antoniou;Phys. Rev. E.,2000

2. Fractals atT=Tcdue to Instantonlike Configurations;Antoniou;Phys. Rev. Lett.,1998

3. Critical Phenomena in Microgravity: Past, Present, and Future;Barmatz;Rev. Mod. Phys.,2007

4. Analysis of Non-Equilibrium Fluctuations in a Ternary Liquid Mixture;Bataller;Microgravity Sci. Technol.,2016

5. The Bidimensional Empirical Mode Decomposition with 2D-DWT for Gaussian Image Denoising;Ben Arfia,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3