Contamination Control for Ultra-Sensitive Life-Detection Missions

Author:

Eigenbrode Jennifer L.,Gold Robert,Canham John S.,Schulze Erich,Davila Alfonso F.,Seas Antonios,Errigo Therese,Kujawa Faith,Kusnierkiewicz David,Lorentson Charles,McKay Christopher

Abstract

A key science priority for planetary exploration is to search for signs of life in our Solar System. Life-detection mission concepts aim to assess whether or not biomolecular signatures of life are present, which requires highly sensitive instrumentation. This introduces greater risk of false positives, and perhaps false negatives. Stringent science-derived contamination requirements for achieving science measurements on life-detection missions necessitate mitigation approaches that minimize, protect from, and prevent science-relevant contamination of critical surfaces of the science payload and provide high confidence to life-detection determinations. To this end, we report on technology advances that focus on understanding contamination transfer from pre-launch processing to end of mission using high-fidelity physics in the form of computational fluid dynamics and sorption physics for monolayer adsorption/desorption, and on developing a new full-spacecraft bio-molecular barrier design that restricts contamination of the spacecraft and instruments by the launch vehicle hardware. The bio-molecular barrier isolates the spacecraft from biological, molecular, and particulate contamination from the external environment. Models were used to evaluate contamination transport for a designs reference mission that utilizes the barrier. Results of the modeling verify the efficacy of the barrier and an in-cruise decontamination activity. Overall mission contamination tracking from launch to science operations demonstrated exceptionally low probability on contamination impacting science measurements, meeting the stringent contamination requirements of femtomolar levels of compounds. These advances will enable planetary missions that aim to detect and identify signatures of life in our Solar System.

Funder

National Aeronautics and Space Administration

Publisher

Frontiers Media SA

Reference18 articles.

1. EFun: the Plume Sampling System for Enceladus AdamsE. McKayC. RiccoA. GoldR. E. BonaccorsiR. 2018

2. Numerical Model for Molecular and Particulate Contamination Transport;Brieda;J. Spacecraft Rockets,2019

3. Adsorption of Gases in Multimolecular Layers;Brunauer;J. Am. Chem. Soc.,1938

4. COSPAR Policy on Planetary Protection;Space Res. Today,2020

5. OSIRIS-REx Contamination Control Strategy and Implementation;Dworkin;Space Sci. Rev.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3