Phenotypical changes in Escherichia coli K12 after prolonged exposure to simulated microgravity

Author:

Chavez Alba,Topolski Collin,Hicks Janelle,Villafania Mitchell,Baez Natalie,Burke Marissa,Castillo Hugo

Abstract

Over the past few decades there has been a steady increase in interest in the study of the role of space environment in the genetic and phenotypical changes of microorganisms. More specifically, there are concerns with astronaut health being compromised during missions to the Moon and beyond from changes in many conditions. These include changes in the physiology of bacteria leading to alterations directly related to human health such as virulence and antibiotic resistance or to the functioning of life support systems such as the increase in biofilm formation in the water supply or treatment components. The effects of space conditions on microorganisms have been studied for more than a decade; however, there is still a need to determine the impact of the physiological effect of microgravity not only of bacterial growth, but also on the different virulence-related phenotypes that might contribute to phenotypic plasticity and microbial adaptation. This study focuses on deciphering the phenotypical changes of the commensal bacterium E. coli K12 after growth under simulated microgravity conditions using a 2D microgravity analog. Using a 2D clinostat, Escherichia coli was grown up to 22 days and used to measure changes in phenotypes commonly related to virulence. The phenotypes measured included cell population growth, biofilm development and the response to acidic pH and oxidative stress. Results from our studies showed the tendency to enhanced biofilm formation and a decreased resistance to oxidative stress and to grow under acidic conditions. These results suggest that microgravity regulates the adaptation and phenotypic plasticity of E. coli that could lead to changes in virulence.

Publisher

Frontiers Media SA

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3