Fluidic-Based Instruments for Space Biology Research in CubeSats

Author:

Harandi Bijan,Ng Simon,Liddell Lauren C.,Gentry Diana M.,Santa Maria Sergio R.

Abstract

For the last 15 years, small satellites known as CubeSats have been used to investigate the effects of the space environment on biological organisms. All biological CubeSat missions flown to date have performed studies in low Earth orbit (LEO), each one improving its biological support sub-systems from the last. An upcoming NASA biological CubeSat mission, BioSentinel, will launch as a secondary payload on Artemis 1 and eventually reach a heliocentric orbit beyond LEO, and the protection of Earth’s magnetosphere. The main objectives of BioSentinel are 1) to investigate the biological effects of the deep space radiation environment and 2) to develop our technological capacity to support biological research in deep space. The instruments and subsystems within BioSentinel have heritage from previous CubeSat missions (e.g., fluidics, optics, thermal control), but are extended on many levels. BioSentinel improves upon the materials and design (e.g., decreased card vapor permeability to maintain low humidity; the addition of a fluidic manifold with internal check-valves, desiccant chambers, and bubble traps for each individual fluidic card) and adds new tools for discovery (e.g., onboard LET spectrometer). The main objective of this Perspective is to emphasize the evolution of the fluidic systems used in past and ongoing NASA biological CubeSat missions and highlight aspects of these systems that can be optimized for future experimentation beyond LEO.

Funder

Advanced Exploration Systems

Publisher

Frontiers Media SA

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When Earth Is Not Enough: Lab-on-a-chip Accelerating Space Research;Lab-on-a-chip Devices for Advanced Biomedicines;2024-08-14

2. Lab-on-chip technologies for space research — current trends and prospects;Microchimica Acta;2023-12-14

3. Microbial biology on CubeSats;Next Generation CubeSats and SmallSats;2023

4. Lab-on-a-Chip Technologies for Microgravity Simulation and Space Applications;Micromachines;2022-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3