Linking remote sensing, in situ and laboratory spectroscopy for a Ryugu analog meteorite sample

Author:

Maturilli Alessandro,Schwinger Sabrina,Bonato Enrica,Helbert Jörn,Baqué Mickael,Hamm Maximilian,Alemanno Giulia,D’Amore Mario

Abstract

In 2022 JAXA issued an Announcement of Opportunity (AO) for receiving Hayabusa2 samples returned to Earth. We responded to the AO submitting a proposal based on using a multi-prong approach to achieve two main goals. The first goal is to address the subdued contrast of remote-sensing observations compared to measurements performed under laboratory conditions on analog materials. For this we will link the hyperspectral and imaging data collected from the spacecraft and the in-situ observations from the MASCOT lander instruments (MARA and MASCam) with laboratory-based measurements of Hayabusa2 samples using bi-directional reflectance spectroscopy under simulated asteroid surface conditions from UV to MIR/FIR achieved using three Bruker Vertex 80 V spectrometers in the Planetary Spectroscopy Laboratory. The second goal is the investigation of the mineralogy and organic matter of the samples collected by Hayabusa2, to better understanding the evolution of materials characterizing Ryugu and in general of protoplanetary disk and organic matter, investigating the aqueous alteration that took place in the parent body, and comparing the results with data collected from pristine carbonaceous chondrite analog meteorites. Spectral data will be complemented by Raman spectroscopy under simulated asteroid surface conditions, X-ray diffraction, would also allow us to define the bulk mineralogy of the samples as well as investigate the presence and nature of organic matter within the samples. In situ mineralogical and geochemical characterization will involve a pre-characterization of the sample fragments through scanning electron microscopy low voltage electron dispersive X-ray (EDX) maps, and micro IR analyses of the fragments. If allowed, a thin section of one grain will be used for electron microprobe analyses to geochemically characterize its mineralogical composition. To train our data collection and analysis methods on a realistic sample, we selected a piece of the Mukundpura meteorite, as one of the closer analogs to Ryugu’s surface (Ray et al., Planetary and Space Science, 2018, 151, 149–154). The Mukundpura chunk we selected for this study measures 3 mm in its maximum dimension, and we chose it so to have a test sample of the same size as the Hayabusa2 grain we requested in our proposal to JAXA’s AO. The test gave us confidence that we can measure with good SNR measurements in bi-directional reflectance for samples around 3 mm in size (see Figures 3, 4 below). To address our second goal the spectral data was complemented by Raman spectroscopy measured again under simulated asteroid surface conditions in our Raman Mineralogy and Biodetection Laboratory at DLR.

Publisher

Frontiers Media SA

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3