Assessing the Impact of Land Cover, Soil, and Climate on the Storage Potential of Dryland Sand Dams

Author:

Eisma Jessica A.,Saksena Siddharth,Merwade Venkatesh

Abstract

Sand dams, a water-harvesting structure employed by rural communities in drylands have an inconsistent record of effectiveness. While many sand dams are highly functioning, improper siting, siltation, seepage, and high rates of evaporation from shallow sand reservoirs inhibit the water storage capacity of some sand dams. This study examines large-scale drivers of sand dam storage potential through analysis of an integrated surface and subsurface flow model. Multiple simulations were run, and comparative simulation analyses consider the effect of geomorphological factors, intraseasonal rainfall variability, and future climate conditions on sand dam performance criteria. The analyses revealed that a watershed highly cultivated with low water crops actually reduces evapotranspiration below that of natural vegetation and supports higher groundwater recharge. Additionally, intraseasonal variation and volume of rainfall impact sand dam performance less than the prevailing pattern and duration of dry and rainy seasons. Sand dams constructed in watersheds with sandier soils may experience greater connectivity with the stream margins and thus provide additional groundwater recharge. Lastly, climate change may improve some conditions desirable for sand dam performance, such as extending the duration of the rainy season and reducing overall evapotranspiration. However, the interactions between the expected climate change conditions and other geomorphological factors may result in a net decline in sand dam performance. The results of this study may help identify watersheds that are likely to support a sand dam with high potential for capturing and storing water throughout the dry season.

Funder

Division of Graduate Education

United States Agency for International Development

Publisher

Frontiers Media SA

Reference68 articles.

1. Robustness of sand storage dams under climate change;Aerts;Vadose Zone J.,2007

2. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56;Allen;FAO,1998

3. Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: a review;Ammar;Int. Water Conserv. Res.,2016

4. Land use/land cover change effect on soil erosion and sediment delivery in the winike watershed, Omo Gibe Basin, Ethiopia;Aneseyee;Sci. Total Environ.,2020

5. Modeling long-term soil water dynamics in response to land-use change in a semi-arid area;Bai;J. Hydrol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3