Deep Learning for Isotope Hydrology: The Application of Long Short-Term Memory to Estimate High Temporal Resolution of the Stable Isotope Concentrations in Stream and Groundwater

Author:

Sahraei Amir,Houska Tobias,Breuer Lutz

Abstract

Recent advances in laser spectroscopy has made it feasible to measure stable isotopes of water in high temporal resolution (i.e., sub-daily). High-resolution data allow the identification of fine-scale, short-term transport and mixing processes that are not detectable at coarser resolutions. Despite such advantages, operational routine and long-term sampling of stream and groundwater sources in high temporal resolution is still far from being common. Methods that can be used to interpolate infrequently measured data at multiple sampling sites would be an important step forward. This study investigates the application of a Long Short-Term Memory (LSTM) deep learning model to predict complex and non-linear high-resolution (3 h) isotope concentrations of multiple stream and groundwater sources under different landuse and hillslope positions in the Schwingbach Environmental Observatory (SEO), Germany. The main objective of this study is to explore the prediction performance of an LSTM that is trained on multiple sites, with a set of explanatory data that are more straightforward and less expensive to measure compared to the stable isotopes of water. The explanatory data consist of meteorological data, catchment wetness conditions, and natural tracers (i.e., water temperature, pH and electrical conductivity). We analyse the model's sensitivity to different input data and sequence lengths. To ensure an efficient model performance, a Bayesian optimization approach is employed to optimize the hyperparameters of the LSTM. Our main finding is that the LSTM allows for predicting stable isotopes of stream and groundwater by using only short-term sequence (6 h) of measured water temperature, pH and electrical conductivity. The best performing LSTM achieved, on average of all sampling sites, an RMSE of 0.7‰, MAE of 0.4‰, R2 of 0.9 and NSE of 0.7. The LSTM can be utilized to predict and interpolate the continuous isotope concentration time series either for data gap filling or in case where no continuous data acquisition is feasible. This is very valuable in practice because measurements of these tracers are still much cheaper than stable isotopes of water and can be continuously conducted with relatively minor maintenance.

Publisher

Frontiers Media SA

Reference80 articles.

1. AbadiM. AgarwalA. BarhamP. BrevdoE. ChenZ. CitroC. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv Preprint2016

2. Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs;Adnan;J. Hydrol.,2019

3. Optimizing feedforward artificial neural network architecture;Benardos;Eng. Appl. Artif. Intell.,2007

4. Algorithms for hyper-parameter optimization;Bergstra;Adv. Neural Inform. Process. Syst.,2011

5. “Making a Science of Model Search: Hyperparameter optimization in hundreds of dimensions for vision architectures,”;Bergstra;International Conference on Machine Learning,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3