Isotopic Heterogeneity of Stem Water in Conifers Is Correlated to Xylem Hydraulic Traits and Supports Multiple Residence Times

Author:

Bowers William H.,Williams David G.

Abstract

The isotopic composition of xylem water is frequently measured to identify sources of plant water uptake and evaluate the ecosystem water budget. The most common approach to sample xylem water is cryogenic vacuum distillation (CVD). However, the water recovered by CVD is total xylem water from the complex xylem tissue, including living xylem parenchyma cells, embolized tracheary conduits, and small or disconnected conduits that may have a different isotopic composition from water conducted through conduits of the dominant flow from roots to leaves. The isotopic composition of water in the dominant flow network is likely more representative of the isotopic composition of daily transpiration whereas the total xylem water likely integrates water with a longer residence time that may undergo exchange with organic compounds. An alternative extraction method using a pressure chamber (PC) can capture predominantly the transpiration-stream water through the dominant flow network. We compared the offsets in the isotopic composition of water recovered using CVD and PC from eight conifer species that vary in xylem anatomical and functional traits. The PC method accessed a significantly distinct isotopic domain of stem xylem water compared to the total xylem water accessed by CVD (δ2H, p = 0.012; δ18O, p = 0.028). The difference between δ2H of stem water extracted by PC and CVD methods (Δ2Hstem) was significantly correlated with stem water content (p = 0.048) and the mean Δ2Hstem for each species had a significant relationship with species-specific xylem vulnerability to cavitation (i.e., ψ50) from literature values (p = 0.030). We found a significant positive relationship between Δ2Hstem and Δ18Ostem across all trees sampled (p = <0.001). These results support the existence of isotopically heterogeneous water pools, but we cannot exclude potential CVD artifacts contributing to a portion of the Δ2Hstem offsets. Our data suggest additional mechanisms of incomplete mixing and variable residence time in xylem conduits may contribute to isotopic heterogeneity proposed by previous work. Future work should consider using the PC method for assessing the isotopic composition of daily scale transpiration and determining species-specific xylem anatomical properties that could explain isotopic differences between various xylem water pools.

Funder

University of Wyoming

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3