Optimizing the water-ecosystem-food nexus of avocado plantations

Author:

Lilli Maria A.,Efstathiou Dionissis,Koukianaki Evangelia A.,Paranychianakis Nikolaos,Nikolaidis Nikolaos P.

Abstract

Climate change, food and water security and ecosystem sustainable management are tightly interlinked and require holistic approaches to achieve solutions that do not impact adversely one-another. The objective of this work was to conduct studies, collect data and assess the Water-Ecosystem-Food (WEF) nexus in avocado plantations in the Mediterranean region systematically to minimize the environmental footprint while maximizing the benefits for the farmer and the environment. The study includes two distinct experiments; the first addresses the impact of soil organic amendments addition to optimize the WEF nexus and the second monitors experimentally crop water needs and thus illustrates how irrigation practices aided by technology can reduce substantially water consumption. The results showed that organic amendments addition improves fertility, nutrient sequestration and structure but only had a weak effect on biodiversity by increasing the number of unique species. For the development of an efficient irrigation system it is necessary to determine the radius around the tree, the depth of the roots and the time required for the water to reach the active root zone to determine the amount and duration of irrigation. In this way sufficient water will be added to replenish the soil moisture deficit created due to the evapotranspiration. HYDRUS-1D model was used to simulate soil moisture and the hydrologic budget of an avocado tree located in Koiliaris river basin and confirm the percolation losses to groundwater. The results of this study showed that the actual irrigation needs of avocados in the Mediterranean is less than 2,000 m3/ha which is 75% less than what is recommended and could become the primary measure for the mitigation of climate change impacts especially in semi-arid regions such as the Mediterranean.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3