Stochastic multi-fidelity joint hydrogeophysical inversion of consistent geological models

Author:

Neven Alexis,Schorpp Ludovic,Renard Philippe

Abstract

In Quaternary deposits, the characterization of subsurface heterogeneity and its associated uncertainty is critical when dealing with groundwater resource management. The combination of different data types through joint inversion has proven to be an effective way to reduce final model uncertainty. Moreover, it allows the final model to be in agreement with a wider spectrum of data available on site. However, integrating them stochastically through an inversion is very time-consuming and resource expensive, due to the important number of physical simulations needed. The use of multi-fidelity models, by combining low-fidelity inexpensive and less accurate models with high-fidelity expensive and accurate models, allows one to reduce the time needed for inversion to converge. This multiscale logic can be applied for the generation of Quaternary models. Most Quaternary sedimentological models can be considered as geological units (large scale), populated with facies (medium scale), and finally completed by physical parameters (small scale). In this paper, both approaches are combined. A simple and fast time-domain EM 1D geophysical direct problem is used to first constrain a simplified stochastic geologically consistent model, where each stratigraphic unit is considered homogeneous in terms of facies and parameters. The ensemble smoother with multiple data assimilation (ES-MDA) algorithm allows generating an ensemble of plausible subsurface realizations. Fast identification of the large-scale structures is the main point of this step. Once plausible unit models are generated, high-fidelity transient groundwater flow models are incorporated. The low-fidelity models are populated stochastically with heterogeneous facies and their associated parameter distribution. ES-MDA is also used for this task by directly inferring the property values (hydraulic conductivity and resistivity) from the generated model. To preserve consistency, geophysical and hydrogeological data are inverted jointly. This workflow ensures that the models are geologically consistent and are therefore less subject to artifacts due to localized poor-quality data. It is able to robustly estimate the associated uncertainty with the final model. Finally, due to the simplification of both the direct problem and the geology during the low-fidelity part of the inversion, it greatly reduces the time required to converge to an ensemble of complex models while preserving consistency.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3