High Fluid Velocity and Narrow Channels Enhance the Influences of Particle Shape on Colloid Retention in Saturated Groundwater Systems Under Favorable Deposition Conditions

Author:

Li Ke,Ma Huilian

Abstract

Many particulate pollutants in the environment exist in non-spherical shape, but the influences of particle shape on pollutant migration and removal in groundwater systems are not well-understood. In this work, we simulated the three-dimensional translational and rotational motions of rod-shaped colloids in simple flow channels characterizing groundwater flow paths, with an aim to elucidate the underlying mechanisms for rod retention. Through an investigation of the interplay of multiple factors (e.g., aspect ratio, particle size/density, flow shear, channel dimension, and orientation relative to gravity), we determined under what conditions particle shape has the most pronounced impact on transport and retention under favorable deposition conditions (i.e., lacking repulsive energy barriers). Our results showed that in many cases, medium sized rods of ~0.4–2 μm in equivalent volume diameter exhibited much improved retention compared to equal-volume spheres, since for that size range, particle rotation from shape-induced fluid hydrodynamics and rotational diffusion were both important, which caused rods to drift considerably across flow streamlines to intercept collector surfaces. Particle rotation also allowed rods to travel farther downstream along flow channels for retention compared to spheres. The differences in retention between rods and spheres were more evident at relatively high fluid velocity, narrow flow channel, or when flow direction aligned with gravity. Our findings demonstrated that the effect of particle shape on pollutant transport and migration in groundwater systems was essential and provided important guidelines in optimizing parameter designs to utilize particle shape effect for better pollutant removal.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3