Integrating resilience and nexus approaches in managing flood risk

Author:

Raub Kristin B.,Flynn Stephen E.,Stepenuck Kristine F.,Hedderman Ciaran

Abstract

As climate change has worsened, so too has the risk weather-driven natural disasters pose to critical infrastructure, such as vital food, energy, and water systems. While both the concepts of a food-energy-water (FEW) nexus and resilience emphasize the interdependence of complex systems, academic studies have largely neglected a potential synthesis between the two. When applied in tandem, we believe the FEW nexus and resilience can be mutually reinforcing. Nexus approaches can enhance cross-sectoral evaluation and decision making in resilience planning, and resilience-oriented approaches can better situate the FEW nexus within a broader social, ecological, and governance context. From the small body of existing academic literature considering these concepts in tandem, we have identified a promising foundation for relevant future research that targets three key challenges: coordination, scale, and heterogeneity. Responding to these challenges, in turn, can lead to actions for constructing more resilient infrastructure systems that meet vital human needs in the midst of increasingly frequent floods and other extreme weather events.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Reference51 articles.

1. Social and ecological resilience: are they related?;Adger;Progr. Hum. Geogr.,2000

2. Panarchy: theory and application;Allen;Ecosystems,2014

3. Water privatization trends in the United States: human rights, national security, and public stewardship;Arnold;William Mary Environ. Law Policy Rev.,2009

4. Boundary object or bridging concept? A citation network analysis of resilience;Baggio;Ecol. Soc.,2015

5. Water-energy-food nexus within the framework of international water law;Belinskij;Water,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3