Precipitation fuels dissolved greenhouse gas (CO2, CH4, N2O) dynamics in a peatland-dominated headwater stream: results from a continuous monitoring setup

Author:

Piatka David R.,Nánási Raphaela L.,Mwanake Ricky M.,Engelsberger Florian,Willibald Georg,Neidl Frank,Kiese Ralf

Abstract

Stream ecosystems are actively involved in the biogeochemical cycling of carbon (C) and nitrogen (N) from terrestrial and aquatic sources. Streams hydrologically connected to peatland soils are suggested to receive significant quantities of particulate, dissolved, and gaseous C and N species, which directly enhance losses of greenhouse gases (GHGs), i.e., carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), and fuel in-stream GHG production. However, riverine GHG concentrations and emissions are highly dynamic due to temporally and spatially variable hydrological, meteorological, and biogeochemical conditions. In this study, we present a complete GHG monitoring system in a peatland stream, which can continuously measure dissolved GHG concentrations and allows to infer gaseous fluxes between the stream and the atmosphere and discuss the results from March 31 to August 25 at variable hydrological conditions during a cool spring and warm summer period. Stream water was continuously pumped into a water-air equilibration chamber, with the equilibrated and actively dried gas phase being measured with two GHG analyzers for CO2 and N2O and CH4 based on Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) and Non-Dispersive Infra-Red (NDIR) spectroscopy, respectively. GHG measurements were performed continuously with only shorter measurement interruptions, mostly following a regular maintenance program. The results showed strong dynamics of GHGs with hourly mean concentrations up to 9959.1, 1478.6, and 9.9 parts per million (ppm) and emissions up to 313.89, 1.17, and 0.40 mg C or N m−2h−1 for CO2, CH4, and N2O, respectively. Significantly higher GHG concentrations and emissions were observed shortly after intense precipitation events at increasing stream water levels, contributing 59% to the total GHG budget of 762.2 g m−2 CO2-equivalents (CO2-eq). The GHG data indicated a constantly strong terrestrial signal from peatland pore waters, with high concentrations of dissolved GHGs being flushed into the stream water after precipitation. During drier periods, CO2 and CH4 dynamics were strongly influenced by in-stream metabolism. Continuous and high-frequency GHG data are needed to assess short- and long-term dynamics in stream ecosystems and for improved source partitioning between in-situ and ex-situ production.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3