Functional Groups Mask Inter- and Intraspecific Variation in Water Use Strategies in a Seasonally Dry Tropical Forest

Author:

Adams Rachel E.,West Jason B.

Abstract

Across the karst landscape of Quintana Roo, Mexico, plant access to nutrients and water appears limited by generally shallow soil. However, underlying this surface are heterogenous pockets in bedrock and deeper, stable groundwater, suggesting the potential for specialization by species in accessing soil resources. If species differentially access rock resources, divisions by functional groups may also be expected. In this study, shallow caves provided an opportunity to assess resource use strategies by direct, species-specific root observations coupled with traditional above ground measurements. Utilizing stable isotopes from stems and leaves (δ18O and δ13C), we investigated water access and water use efficiency of trees during the dry season to uncover relationships between rooting habit, tree size, and pre-determined functional groups based on leaf habit and wood density. Functional group membership did not predict measured stable isotope ratios, indicating that functional groups were poor predictors of resource use. We did find evidence for deep water use by select species and larger individuals. Interestingly, as trees became larger, δ13C increased to a threshold but then declined, suggesting increasing vulnerability to water limitation as trees increase in size, consistent with other seasonally dry tropical forests. Our work demonstrates that, although shallow soils likely drive strong resource limitations, co-occurring trees in karst ecosystems employ diverse resource acquisition strategies, suggesting important consequences for community composition and ecosystem function in the face of environmental change.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3