It Takes a Village: Using a Crowdsourced Approach to Investigate Organic Matter Composition in Global Rivers Through the Lens of Ecological Theory

Author:

Borton Mikayla A.,Collins Sarah M.,Graham Emily B.,Garayburu-Caruso Vanessa A.,Goldman Amy E.,de Melo Michaela,Renteria Lupita,Stegen James C.,

Abstract

Though community-based scientific approaches are becoming more common, many scientific efforts are conducted by small groups of researchers that together develop a concept, analyze data, and interpret results that ultimately translate into a publication. Here, we present a community effort that breaks these traditional boundaries of the publication process by engaging the scientific community from initial hypothesis generation to final publication. We leverage community-generated data from the Worldwide Hydrobiogeochemistry Observation Network for Dynamic River Systems (WHONDRS) consortium to study organic matter composition through the lens of ecological theory. This community endeavor will use a suite of paired physical and chemical datasets collected from 97 river corridors across the globe. With our first step aimed at ideation, we engaged a community of scientists from over 20 countries and 60 institutions, spanning disciplines and career stages by holding a virtual workshop (April 2021). In the workshop, participants generated content for questions, hypotheses, and proposed analyses based on the WHONDRS dataset. These ideation efforts resulted in several narratives investigating different questions led by different teams, which will be the basis for research articles in a Frontiers in Water collection. Currently, the community is collectively analyzing, interpreting, and synthesizing these data that will result in six crowdsourced articles using a single, existing WHONDRS dataset. The use of a shared dataset across articles not only lowers barriers for broad participation by not requiring generation of new data, but also provides unique opportunities for emergent learning by connecting outcomes across studies. Here we will explain methods used to enable this community endeavor aimed to promote a greater diversity of thinking on river corridor biogeochemistry through crowdsourced science.

Funder

U.S. Department of Energy

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3