Research History and Functional Systems of Fog Water Harvesting

Author:

Qadir Manzoor,Jiménez Gabriela C.,Farnum Rebecca L.,Trautwein Peter

Abstract

Water is among the top five global risks in terms of impacts translated through socio-economic and environmental challenges, influencing people's wellbeing. The situation is grim in water-scarce countries, which need to think and act beyond conventional water resources and tap unconventional water supplies to narrow the gap between water demand and supply. Among unconventional water resources, water embedded in fog is increasingly seen as a source of potable water in dry areas where fog is intense and prevalent. Although a low maintenance option and a green technology to supply freshwater, the potential to collect water from air through fog harvesting is by far under-explored. Based on the comprehensive analysis of fog water collection's research history since 1980, this study reveals that recent years have witnessed a sharp increase in research related to technological developments in fog collection systems. Also, there is an increased focus on associated policy and institutional aspects, economics, environmental dimensions, capacity building, community participation, and gender mainstreaming. In addition to research, fog water collection practice has also increased over time with emerging examples worldwide, notably from Canary Islands, Chile, Colombia, Eritrea, Ethiopia, Guatemala, Israel, Morocco, Namibia, Oman, Peru, and South Africa. The functional systems of fog water collection demonstrate community engagement, women empowerment, enhanced capacity and training, and active participation of local institutions as the key drivers for effective fog collection systems to provide a sustainable supply of freshwater to the associated communities.

Publisher

Frontiers Media SA

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3