Upscaling point-scale soil hydraulic properties for application in a catchment model using Bayesian calibration: An application in two agricultural regions of New Zealand

Author:

Rajanayaka Channa,Woodward Simon J. R.,Lilburne Linda,Carrick Sam,Griffiths James,Srinivasan M. S.,Zammit Christian,Fernández-Gálvez Jesús

Abstract

Hydrological modeling for landscape and catchment scale applications requires upscaling of soil hydraulic parameters which are generally only available at point scale. We present a case study where hourly root zone soil water content and drainage observations from nine flat, pastoral sites (Waikato and Canterbury regions in New Zealand) were used to develop an upscaling approach to parameterize the soil water balance module of the TopNet catchment model, based on scaling multi-layer soil profile information from the national soil data base, S-map, to the single-layer soil profile used in TopNet. Using a Bayesian calibration approach, the hydraulic behavioral parameters of TopNet's soil water balance module were identified. Of the eleven calibration parameters considered three were found to be insensitive to data (stress point, unsaturated hydraulic conductivity and infiltration rate); three were correlated and could be determined from specific soil water content observations (wilting point, field capacity and drainable water); and five were correlated and could be determined from combined specific soil water content and drainage observations (drainage rate, saturated hydraulic conductivity profile, effective soil depth, soil water holding capacity and wetting front suction). Based on the eight correlated parameters, upscaling functions were then developed to derive suitable model parameters from S-map-hydro for each site. The validity of the upscaling functions was verified at each site. The approach used in this research can be used to parameterize the TopNet model at other similar locations, and also provides a transferable framework to parameterize other catchment-scale hydrology models where point-scale soil hydraulic data available.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3