Identifying Minimum Information Requirements to Improve Integrated Modeling Capabilities: Lessons Learned From Dynamic Adaptive Policy Pathways

Author:

Rosello Caroline,Guillaume J. H. A.,Taylor P.,Cuddy S.,Pollino C.,Jakeman A. J.

Abstract

Integrated Assessment Models (IAMs) were initially developed to inform decision processes relating to climate change and then extended to other natural resource management decisions, including issues around integrated water resources management. Despite their intention to support long-term planning decisions, model uptake has generally been limited, partly due to their unfulfilled capability to manage deep uncertainty issues and consider multiple perspectives and trade-offs involved when solving problems of interest. In recent years, more emphasis has been put on the need for existing models to evolve to be used for exploratory modeling and analysis to capture and manage deep uncertainty. Building new models is a solution but may face challenges in terms of feasibility and the conservation of knowledge assets. Integration and augmentation of existing models is another solution, but little guidance exists on how to realize model augmentation that addresses deep uncertainty and how to use such models for exploratory modeling purposes. To provide guidance on how to augment existing models to support decisions under deep uncertainty we present an approach for identifying minimum information requirements (MIRs) that consists of three steps: (1) invoking a decision support framework [here, Dynamic Adaptive Policy Pathways (DAPP)] to synthesize information requirements, (2) characterizing misalignment with an existing integrated model, (3) designing adjustable solutions that align model output with immediate information needs. We employ the Basin Futures model to set up the approach and illustrate outcomes in terms of its effectiveness to augment models for exploratory purposes, as well as its potential for supporting the design of adaptative pathways. The results are illustrated in the context of the Brahmani River Basin (BRB) system and discussed in terms of generalization and transferability of the approach to identifying MIRs. Future work directions include the refinement and evaluation of the approach in a planning context and testing of the approach with other models.

Funder

Australian Research Council

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3