High-resolution mapping of snow cover in montane meadows and forests using Planet imagery and machine learning

Author:

Yang Kehan,John Aji,Shean David,Lundquist Jessica D.,Sun Ziheng,Yao Fangfang,Todoran Stefan,Cristea Nicoleta

Abstract

Mountain snowpack provides critical water resources for forest and meadow ecosystems that are experiencing rapid change due to global warming. An accurate characterization of snowpack heterogeneity in these ecosystems requires snow cover observations at high spatial resolutions, yet most existing snow cover datasets have a coarse resolution. To advance our observation capabilities of snow cover in meadows and forests, we developed a machine learning model to generate snow-covered area (SCA) maps from PlanetScope imagery at about 3-m spatial resolution. The model achieves a median F1 score of 0.75 for 103 cloud-free images across four different sites in the Western United States and Switzerland. It is more accurate (F1 score = 0.82) when forest areas are excluded from the evaluation. We further tested the model performance across 7,741 mountain meadows at the two study sites in the Sierra Nevada, California. It achieved a median F1 score of 0.83, with higher accuracy for larger and simpler geometry meadows than for smaller and more complexly shaped meadows. While mapping SCA in regions close to or under forest canopy is still challenging, the model can accurately identify SCA for relatively large forest gaps (i.e., 15m < DCE < 27m), with a median F1 score of 0.87 across the four study sites, and shows promising accuracy for areas very close (>10m) to forest edges. Our study highlights the potential of high-resolution satellite imagery for mapping mountain snow cover in forested areas and meadows, with implications for advancing ecohydrological research in a world expecting significant changes in snow.

Funder

Division of Earth Sciences

Office of Advanced Cyberinfrastructure

National Aeronautics and Space Administration

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3