Insights gained from two decades of intensive monitoring: hydrology and nitrate export in a tile-drained agricultural catchment

Author:

Bauwe Andreas,Lennartz Bernd

Abstract

Nitrate (NO3) export from agricultural land poses an ongoing threat to both inland and coastal waters. Experimental studies investigating the hydrology-NO3-export mechanisms require long-term data to identify reliable causal relationships. In this study, utilizing a 23-year continuous dataset with a high temporal resolution (daily to twice a week), we aim to identify potential drivers for NO3-losses and assess the impact of nitrogen (N) soil surface budgets on NO3-export. A drainage plot (4.2 ha) and a ditch catchment (179 ha) were fully equipped to register hydrological parameters, including water sample collection. Mean annual NO3-N concentrations (loads) for the drainage plot and the ditch catchment were 9.4 mg l−1 (20.6 kg ha−1) and 6.0 mg L−1 (20.9 kg ha−1), respectively. Annual discharge was closely positively correlated with annual NO3-losses, highlighting the significant influence of prevailing weather and, consequently, hydrologic conditions on NO3-export rates. The majority of the annual NO3-load was exported during winter (56% at the drainage plot, 51% at the ditch catchment), while the rest was exported during spring (28, 29%), summer (9, 9%) and fall (7, 11%). We could not find any direct relationships between N soil surface budgets and NO3-losses. Putting all results together, it can be concluded that agricultural activities for many decades resulted in high soil N stocks, which determined the general high NO3-N concentration levels. Nevertheless, temporal NO3-export dynamics during the last two decades were clearly driven by hydro-meteorological conditions, nearly independently of land management and N soil surface budgets on the fields.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3