Integration of a Network-Based and an Economy-Wide Water Model to Support Decision Making on Water Resources Planning and Management in Northeastern Brazil

Author:

Alcoforado de Moraes Márcia M. G.,Souza da Silva Gerald N.,Cunha Marcelo Pereira da,Dias Nilena B. M.,Cardoso Terezinha F.,Guilhoto Joaquim J. M.,Candido Laíse Alves,Santos Reinan R. S.

Abstract

Allocation of Water Resources at the basin level is a critical issue for economic growth as well as for environmental sustainability. This study integrates network-based optimization with an Input-Output model, made available through a Spatial Decision Support System (HEAL), to support design and evaluation of water allocation policies. The innovative platform was applied to a case study using four-interlinked hydrographic basins in Northeastern of Brazil. The integrated modeling was able to measure broader socioeconomic impacts of decisions on reservoir volumes and water allocations at basin level, through indicators in a sectoral and regional scale, including ones associated with Sustainable Development Goals, such as the Water Use Efficiency (WUE) indicator. Results of the trade-offs between two scenarios, representative of the limits of performance of regulatory water instruments, were generated using the integrated modeling. They were compared with the Reference scenario for the base year (2011) and show that the economic sector most negatively affected by the regulatory instrument use is the industrial sector. Furthermore, the sugar and ethanol industry, main water users in the industrial sector (93.1% of the sector's water use) and less efficient (WUE 1.47 US$/m3 vs. 30.70 US$/m3 average of the sector) in the base year, maintain their percentage share of water use in the sector and even slightly expand it (93.2%), with slight efficiency gains (+2.3%). On the other hand, non-water-intensive industries, have their shares reduced (from 6.9 to 6.8%) and lose efficiency (−9.5%). Results of the same trade-offs by region showed that the largest proportional economic losses occur in the drier areas, damaging the economy, especially in the most industrialized municipalities with the highest GDPs. Integrated economic modeling can expand aspects involved in water security issues, assisting management by introducing socioeconomic impact measures, in a broader scale, associated with allocation decisions. Hydrological allocation criteria cannot distinguish between user efficiency and which economic sectors are using how much water. This results in economic and social losses. In water-scarce regions and with growing transfer needs, such as in the basins studied, adequate incentives, through management instruments designed based on economic theory, are essential to promote sustainable development.

Publisher

Frontiers Media SA

Reference56 articles.

1. Analysis of the effects of water management strategies and climate change on the environmental and agricultural sustainability of Urmia Lake Basin, Iran;Ahmadaali;Water,2018

2. The impact of global changes on economic values of water for public irrigation schemes at the São Francisco River Basin in Brazil;Alcoforado de Moraes;Reg. Environ. Change,2018

3. National Information System on Water Ressources. Sistema Nacional de Informações sobre Recursos Hídricos2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3