The enhancement of water and energy conservation through condensed water reclamation for evaporative cooling towers

Author:

Leung Yiu-Kuen,Cheng Ka Wai Eric

Abstract

Although environmental groups have declaimed the application of greywater to alleviate water consumption, the progress of condensed water implementation for high-rise buildings was still sluggish. As greywater demands wastewater treatment before any application, the novelty of this study was to demonstrate the direct use of condensed water in an existing cooling water system without wastewater treatment. Considering there is barely any practical case study research to unveil the water-energy nexus in reclaiming condensed water for evaporative cooling tower systems, this research has signified that condensed water is a simple and low-budget application for water conservation and energy saving. Given that the condensed water possesses an intrinsic impurity-free property, the water-saving potentials have been amplified to the most tolerable total dissolved solids (TDS) of system water. Furthermore, it is beneficial that water quality control ameliorated the operating working conditions, the system performances were improved, and then less power was consumed. By getting rid of the wastewater treatment, consolidating the feasibility of practical direct-use application, and its sustainability for water and energy saving, this research may revive the attention of green building claimers to expedite its implementation and tie in the green building design. The condensed water derived from the electric ventilation system was reclaimed as an alternative water source for cooling without extra power consumption, which was ideal for concentration dilution and beneficial to descaling. An evaporative cooling system consumes tons of water, and the water losses are necessarily compensated by fresh water; this process occurs gradually over time and progressively escalates the TDS with time, which evocates water scale formations. Although the bleed-off (BO) that discharges the impurity-laden system water effectively lowers the TDS, it is not a water conservation measure, and the chemical effluent poses environmental hazards. The higher cycles of concentration (CoC) reduce the frequency of BO and sustain the full efficacy of antiscaling chemicals. Whenever water scales appear as a resistance of heat transfer deposit on the heat exchangers, the heat management capability is diminished and energy efficiency drops. The water and energy saving enhancement method was accomplished by reclaiming the condensed water and setting higher CoC.

Publisher

Frontiers Media SA

Reference22 articles.

1. AHRI Guideline E, 1997 Guideline for Fouling Factors: A Survey of their Application in Today's Air Conditioning and Refrigeration Industry 1997

2. Bhatia A. CED Engineering course 2022, M05-013, HVAC Enegry Conservation through Cooling Water Treatment 2022

3. Evaluating the performance of small wastewater treatment plants;Engstler;Front. Environm. Sci.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3