New experimental approaches enabling the continuous monitoring of gas species in hydrothermal fluids

Author:

Giroud Sébastien,Tomonaga Yama,Brennwald Matthias S.,Takahata Naoto,Shibata Tomo,Sano Yuji,Kipfer Rolf

Abstract

Hot thermal fluids flow through the Earth's crust and carry valuable information about the deep subsurface. The monitoring of natural tracers transported in geothermal fluids, such as gases or ions, are relevant to better understand the geological processes in the Earth's subsurface and their relation to deep fluid dynamics. Recently developed technologies (e.g., portable gas-equilibrium membrane-inlet mass spectrometry) allow for the continuous monitoring of gas species at a much higher temporal resolution than the sampling procedures commonly used, based on a few individual samples. However, the monitoring of gas species from hot thermal fluids still poses experimental challenges tied to unwanted water vapor condensation in the headspace of the separation module, which irremediably leads to clogging (e.g., of the connecting capillaries) and failure of the detection device. In this contribution, we present two new experimental methods that provide suitable technical conditions to measure gases, even in high temperature geothermal fluids, using a portable gas analyzer. Two sites with different thermal water temperatures (first one ranging from 50 °C to 65 °C and second one close to boiling temperature) were selected. The first method was deployed on the thermal waters of Lavey-les-Bains (Vaud, Switzerland), for which we report results from October 2021. The second method was used in Beppu (Oita Prefecture, Japan), for which we report results from April 2018. Our results show that at both sites, our methods allow for continuous measurements of gas species (N2, Ar, O2, Kr, He, CH4, CO2 and H2) in thermal waters. Furthermore, they show that the variability of gas emanation from the two sites can only be adequately described by measurements with high temporal resolution, which both methods allow.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3