Risk-based hydrologic design under climate change using stochastic weather and watershed modeling

Author:

Shabestanipour Ghazal,Brodeur Zachary,Manoli Benjamin,Birnbaum Abigail,Steinschneider Scott,Lamontagne Jonathan R.

Abstract

Water resources planning and management requires the estimation of extreme design events. Anticipated climate change is playing an increasingly prominent role in the planning and design of long-lived infrastructure, as changes to climate forcings are expected to alter the distribution of extremes in ways and to extents that are difficult to predict. One approach is to use climate projections to force hydrologic models, but this raises two challenges. First, global climate models generally focus on much larger scales than are relevant to hydrologic design, and regional climate models that better capture small scale dynamics are too computationally expensive for large ensemble analyses. Second, hydrologic models systematically misrepresent the variance and higher moments of streamflow response to climate, resulting in a mischaracterization of the extreme flows of most interest. To address both issues, we propose a new framework for non-stationary risk-based hydrologic design that combines a stochastic weather generator (SWG) that accurately replicates basin-scale weather and a stochastic watershed model (SWM) that accurately represents the distribution of extreme flows. The joint SWG-SWM framework can generate large ensembles of future hydrologic simulations under varying climate conditions, from which design statistics and their uncertainties can be estimated. The SWG-SWM framework is demonstrated for the Squannacook River in the Northeast United States. Standard approaches to design flows, like the T-year flood, are difficult to interpret under non-stationarity, but the SWG-SWM simulations can readily be adapted to risk and reliability metrics which bare the same interpretation under stationary and non-stationary conditions. As an example, we provide an analysis comparing the use of risk and more traditional T-year design events, and conclude that risk-based metrics have the potential to reduce regret of over- and under-design compared to traditional return-period based analyses.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3