A three-part coupled statistical and physical model to monitor water quality parameters governing disinfection byproduct risk at an urban drinking water intake

Author:

Hannoun Deena,Tietjen Todd

Abstract

Extended drought in the twenty-first century has led to loss of volume for lakes and reservoirs across the globe. In the Colorado River Basin, USA, Lakes Powell and Mead have experienced a 68 and 71% decline in volume, respectively, since 2000. Lake Mead is important to the Las Vegas Valley as it accounts for 90–100% of the source water used to serve the 2.2 million residents and 43 million annual tourists. Lake Powell is also vital to maintaining water quality in Lake Mead as it is located upstream and provides 97% of the water entering Mead. As Lakes Powell and Mead are projected to continue decreasing in volume over the next 5 years, it is important to understand the effects of loss of lake volume on water quality in this highly-managed system. Here, the effects of lake drawdown on water quality parameters that affect disinfection byproduct (DBP) formation in the source water for the Las Vegas Valley are projected over the next 5 years using Federal flow projections, regression modeling to project influent temperature from Lake Powell into Lake Mead, and a three-dimensional hydrodynamic and water quality model for Lake Mead. Results from these modeling efforts include projections for changes in values of water temperature, bromide, and total organic carbon (TOC) at the modeled cell that contains the Las Vegas Valley's urban drinking water intake. Raw water bromide was found to have little change across modeled scenarios; however, raw water temperature is projected to increase because of falling lake surface elevations. Raw water TOC is projected to increase three-fold in the simulated scenario that includes the most loss of volume but remains close to historic values in the remaining simulated scenarios. With these raw water quality projections, water managers can better plan for alterations to the water treatment processes, including mitigation of DBP formation.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3