High-Frequency Monitoring Reveals Multiple Frequencies of Nitrogen and Carbon Mass Balance Dynamics in a Headwater Stream

Author:

Khamis Kieran,Blaen Phillip J.,Comer-Warner Sophie,Hannah David M.,MacKenzie A. Rob,Krause Stefan

Abstract

The uptake of aquatic nutrients can represent a major pathway for their removal from river ecosystems and is a key control on nitrogen and carbon export from watersheds. Our understanding of temporal variability in nutrient mass balance is incomplete as conventional methods for estimating uptake rates are suited to low-frequency analysis. Here, we utilised hourly streamflow, nitrate (NO3--N) and dissolved organic carbon (DOC) to generate near-continuous estimates of nutrient uptake along a 1 km reach in a headwater catchment with a history of agricultural activity. We identified variability in nutrient mass balance at multiple frequencies. Over seasonal timescales, a shift from nitrate release during spring to uptake during autumn was apparent. In contrast, consistent uptake of DOC was observed across the whole monitoring period (i.e., spring—autumn). Both DOC and nitrate uptake were related significantly to environmental variables (river discharge) and antecedent discharge conditions. DOC:nitrate stoichiometry appeared to be a key control on nitrate uptake rates, yet this coupling weakened from summer to autumn as DOC became more abundant and physical controls become more important. Daily cycles in nutrient uptake were evident and at times the investigated reach acted as a net sink of DOC during the day and a source at night. Short-term impacts of storm events on uptake rates varied seasonally but no consistent changes were observed between pre- and post-event conditions, suggesting aquatic communities were resilient to short-term flow disturbances. For the duration of our study, the reach acted as net sink from the water for DOC (−1.7% of upstream flux) and a net source for nitrate (+2.6%). Even during autumn, when uptake was greatest, mass removal represented <3% of nitrate exported downstream. Our results facilitate new insights into multi-timescale patterns and drivers of stream ecosystem processes, which are essential for developing effective catchment-scale management strategies.

Funder

Natural Environment Research Council

Publisher

Frontiers Media SA

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3