Estimating Surface Water Presence and Infiltration in Ephemeral to Intermittent Streams in the Southwestern US

Author:

Gallo Erika L.,Meixner Thomas,Lohse Kathleen A.,Nicholas Hillary

Abstract

Streamflow in arid and semi-arid regions is predominantly temporary, an integral part of mountain block hydrology and of significant importance for groundwater recharge and biogeochemical processes. However, temporary streamflow regimes, especially ephemeral flow, remain poorly quantified. We use electrical resistance sensors and USGS stream gauge data in 15 southern Arizona streams spanning a climate gradient (mean annual precipitation from 160 to 750 mm) to quantify temporary streamflow as streamflow presence and water presence, which includes streamflow, ponding and soil moisture. We use stream channel sediment data to estimate saturated hydraulic conductivity and potential annual infiltration. Annual streamflow ranged 0.6–82.4% or 2–301 days; while water presence ranged from 2.6 to 82.4% or 10 to over 301 days, or 4–33 times longer than streamflow. We identified 5 statistically distinct flow regimes based on the annual percent streamflow and water presence: (1) dry-ephemeral, (2) wet-ephemeral, (3) dry-intermittent, (4) wet-intermittent, and (5) seasonally-intermittent. In contrast to our expectations, stream channel density was a better predictor of annual streamflow and water presence than annual rainfall alone. Whereas, the dry-ephemeral and wet-ephemeral flow regimes varied with seasonal precipitation, the dry-intermittent, wet intermittent and seasonally-intermittent flow regimes did not. These results coupled with the potential infiltration estimates indicate that streamflow at the driest sites occurs in response to rainfall and overland flow while groundwater discharge and vadose zone contributions enhance streamflow at the wetter sites. We suggest that on a short temporal scale, and with respect to water presence, wetter sites might be buffered better against shifts in the timing and distribution of precipitation in response to climate change. Flow regime classifications that include both stream flow and water presence, rather than on stream flow alone, may be important for predicting thresholds in ecological functions and refugia in these dryland systems.

Funder

Strategic Environmental Research and Development Program

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3