Can Prediction and Understanding of Water Quality Variation Be Improved by Combining Phosphorus Source and Waterbody Condition Parameters?

Author:

Stutter Marc,Glendell Miriam,Ibiyemi Adekunle,Palarea-Albaladejo Javier,May Linda

Abstract

Phosphorus (P) pollution impairs river systems globally. There is long-standing interest in understanding catchment source P loads to inform mitigation to improve water quality. However, P sources to the hydrosphere differ individually in discharge behaviour, P intensity, bioavailability, and cumulative impacts. River condition also varies (e.g., riparian disturbance, climate change impacts) such that source and river resilience are likely synergistic but poorly studied controls on water quality variation. To challenge the use of overly-simplistic factors (e.g., basic soils and landcover) in empirical catchment pollution source-impact assessments, we pooled spatial data according to conceptual aspects of P source mechanisms and waterbody riparian condition. These were related empirically to P concentrations and loads, and trophic diatom indices, for 19 Scottish catchments (~10–250 km2) representing some mechanistic aspects of pollution loading and river impacts. Sources of P from septic tanks and farmyards influenced loads and ecological impacts. Some secondary calculations pooling spatial data such as septic tank source-delivery methods were novel, involving complex, but available, soil water flowpath data. In contrast, inclusion of channel condition and farmyard P loads used simple aerial imagery. Multiple Factor Analysis combined with Redundancy Analysis showed that source P loads expressed as bioavailable forms of P were better explanatory factors of diatom classification groups than stream soluble reactive P concentrations, although used together they improved explanation further. Riparian quality metrics were less powerful predictors than expected, likely with more scale-dependant effects on ecological functions than can be quantified by visual condition assessment on isolated short reaches. There was strong justification for examining separate P fractions (total, dissolved, particulate and bioavailable forms) by distinct catchment source types to understand better nutrient dynamics across land to waters, ecosystem degradation and waterbody impacts in the contemporary hydrosphere.

Funder

Scottish Government

Publisher

Frontiers Media SA

Subject

General Medicine

Reference66 articles.

1. Soil risks - Interpreted soils data for policy makers, agencies and industry;Baggaley;Soil Use Manage.,2019

2. Integrating economic and biophysical data in assessing cost-effectiveness of buffer strip placement;Balana;J. Environ. Qual.,2012

3. Challenges of reducing phosphorus based water eutrophication in the agricultural landscapes of northwest Europe;Bol;Front. Mar. Sci,2018

4. BoormanD. B. HollisJ. M. LillyA. Hydrology of Soil Types: A Hydrologically Based Classification of the Soils of the United Kingdom. Institute of Hydrology1995

5. Nutrient and light limitation of periphyton in the River Thames: implications for catchment management;Bowes;Sci. Total Environ,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3