New Experimental Tools to Use Noble Gases as Artificial Tracers for Groundwater Flow

Author:

Brennwald Matthias S.,Peel Morgan,Blanc Théo,Tomonaga Yama,Kipfer Rolf,Brunner Philip,Hunkeler Daniel

Abstract

Labeling groundwater by injecting an artificial tracer is a standard and widely used method to study groundwater flow systems. Noble gases dissolved in groundwater are potentially ideal artificial tracers, as they are not subject to biogeochemical transformations, do not adsorb onto the aquifer matrix, are colorless, and have no negative impact on the quality of groundwater resources. In addition, combining different noble-gas species in multi-tracer tests would allow direct analysis of the spatio-temporal heterogeneity of groundwater flow systems. However, while the handling of noble gases is safe and straightforward for injection into groundwater, conventional methods to analyse dissolved noble gases tend to be impractical for groundwater tracer tests. The sampling and subsequent lab-based analysis of dissolved noble gases are laborious, expensive and time intensive. Therefore, only researchers with access to specialized noble-gas labs have attempted such tracer tests. The recently developed gas-equilibrium membrane-inlet mass spectrometers (GE-MIMS) allow efficient on-site analysis of dissolved gases at high temporal resolution. The GE-MIMS instruments thereby eliminate most of the analytical and logistical constraints of conventional lab-based techniques and therefore provide new opportunities for groundwater tests using artificially injected gases. We used a GE-MIMS to systematically test the applicability of He, Kr, and Xe as artificial groundwater tracers. These gas species were injected into groundwater as Dirac-like pulses at three piezometers located at various locations upstream of a pumping well, where dissolved gas concentrations were continuously monitored with the GE-MIMS instrument. The groundwater travel times observed in these tracer tests ranged from a few hours to several weeks, and were consistent with the groundwater flow field at the experimental test site. Travel times determined from the noble gas tracer tests were also consistent with those obtained traditional dye tracers.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3