Application of machine learning and deep neural networks for spatial prediction of groundwater nitrate concentration to improve land use management practices

Author:

Karimanzira Divas,Weis Jonas,Wunsch Andreas,Ritzau Linda,Liesch Tanja,Ohmer Marc

Abstract

The prediction of groundwater nitrate concentration's response to geo-environmental and human-influenced factors is essential to better restore groundwater quality and improve land use management practices. In this paper, we regionalize groundwater nitrate concentration using different machine learning methods (Random forest (RF), unimodal 2D and 3D convolutional neural networks (CNN), and multi-stream early and late fusion 2D-CNNs) so that the nitrate situation in unobserved areas can be predicted. CNNs take into account not only the nitrate values of the grid cells of the observation wells but also the values around them. This has the added benefit of allowing them to learn directly about the influence of the surroundings. The predictive performance of the models was tested on a dataset from a pilot region in Germany, and the results show that, in general, all the machine learning models, after a Bayesian optimization hyperparameter search and training, achieve good spatial predictive performance compared to previous studies based on Kriging and numerical models. Based on the mean absolute error (MAE), the random forest model and the 2DCNN late fusion model performed best with an MAE (STD) of 9.55 (0.367) mg/l, R2 = 0.43 and 10.32 (0.27) mg/l, R2 = 0.27, respectively. The 3DCNN with an MAE (STD) of 11.66 (0.21) mg/l and largest resources consumption is the worst performing model. Feature importance learning from the models was used in conjunction with partial dependency analysis of the most important features to gain greater insight into the major factors explaining the nitrate spatial variability. Large uncertainties in nitrate prediction have been shown in previous studies. Therefore, the models were extended to quantify uncertainty using prediction intervals (PIs) derived from bootstrapping. Knowledge of uncertainty helps the water manager reduce risk and plan more reliably.

Funder

Bundesministerium für Ernährung und Landwirtschaft

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Reference65 articles.

1. Tensorflow: a system for large-scale machine learning;Abadi;12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),2016

2. Modeling of nitrate concentration in groundwater using artificial intelligence approach- a case study of Gaza coastal aquifer;Alagha;Environ Monit Assess,2014

3. Natural uncertainty of spatial average aquifer recharge through atmospheric chloride mass balance in continental Spain;Alcalá;J. Hydrol.,2015

4. A simple global river bankfull width and depth database: data and analysis note;Andreadis;Water Resour. Res.,2013

5. Multimodal machinelearning: a survey and taxonomy;Baltrusaitis;IEEE Trans. PAMI,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3