Local-scale impacts of water hyacinth on water quality in a hypereutrophic lake

Author:

Corman Jessica R.,Roegner Amber,Ogari Zachary,Miller Todd R.,Aura Christopher M.

Abstract

Increased nutrient concentrations have been linked to water quality impairments across the world. In Lake Victoria, the second largest freshwater lake in the world, decades of eutrophication have challenged water quality management and led to conditions with compromising levels of cyanobacteria and cyanotoxins. Our study focuses on Winam Gulf, where a resurgence of water hyacinth has led to renewed challenges with navigation and anoxia, but also may present a local-scale opportunity for water quality improvements. Over the course of 1.5 years, we conducted three, in situ experiments to vary levels of water hyacinth density and determined its effects on lake water nutrient composition, biochemical parameters (chlorophyll a, cyanotoxins), and fecal indicators (fecal coliforms and Escherchia coli). While our study did not show overwhelming improvements in water quality with increasing water hyacinth density, we did find that small-scale removal of water hyacinth led to decreases in coliforms (F1, 11 = 11.14, p < 0.01), E. coli (F1, 11 = 22.95, p < 0.001), and total microcystins (F1, 9 = 3.47, p = 0.095). Throughout the experiment, the majority of samples collected had both E. coli and microcystin concentrations, notably exceeding World Health Organization guidelines for drinking water. Our data suggest that magnitude of scale, as well as season considerations such as rainfall and background level of water hyacinth, will strongly influence the phytoremediation potential of water hyacinth. The data encourages further exploration of remediation potential of native and introduced macrophytes.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Reference75 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3