Inter-annual Variability of Snowfall in the Lower Peninsula of Michigan

Author:

Meng Lei,Ayon Bandhan Dutta,Koirala Nirjala,Baker Kathleen M.

Abstract

Winter snowfall, particularly lake-contributed snowfall, has a significant impact on the society and environment in the Great Lakes regions including transportation, tourism, agriculture, and ecosystem. Understanding the inter-annual variability of snowfall will provide sound basis for local community safety management and reduce its environmental impacts on agriculture and ecosystems. This study attempts to understand the trend and inter-annual variability in snowfall in the Lower Peninsula of Michigan (LPM) using statistical analysis based on snowfall measurements from eight weather stations. Our study demonstrates that snowfall has significantly increased from 1932 to 2015. Correlation analysis suggests that regional average air temperatures have a strong negative relationship with snowfall in the LPM. On average, approximately 27% of inter-annual variability in snowfall can be explained by regional average air temperatures. ENSO events are also negatively related to snowfall in the LPM and can explain ~8% of inter-annual variability. The North Atlantic Oscillation (NAO) does not have strong influence on snowfall. Composite analysis demonstrates that on an annual basis, more snowfall occurs during the years with higher maximum ice cover (MIC) than during the years with lower MIC in Lake Michigan. Higher MIC is often associated with lower air temperatures which are negatively related to snowfall. This study could provide insight on future snow related climate model improvement and weather forecasting.

Funder

Western Michigan University

Publisher

Frontiers Media SA

Reference48 articles.

1. Classification of annual Great Lakes ice cycles: winters of 1973–2002;Assel;J. Clim.,2005

2. Interannual variability of Great Lakes ice cover and its relationship to NAO and ENSO;Bai;J. Geophys. Res. Oceans,2012

3. Historical spatiotemporal trends in snowfall extremes over the Canadian domain of the Great Lakes Basin;Baijnath-Rodino;Adv. Meteorol.,2018

4. Trend reversal in Lake Michigan contribution to snowfall;Bard;J. Appl. Meteorol. Climatol.,2012

5. A comparison between mean monthly temperature and mean monthly snowfall in New York State;Blechman;Natl. Weather Dig.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3