The ParFlow Sandtank: An interactive educational tool making invisible groundwater visible

Author:

Gallagher Lisa K.,Farley Abram J.,Chennault Calla,Cerasoli Sara,Jourdain Sébastien,O'Leary Patrick,Condon Laura E.,Maxwell Reed M.

Abstract

Physical aquifer models are a highly effective teaching tool for hydrology education, however they come with inherent limitations that include the high cost to purchase, the static configuration of the model materials, the time required to visualize hydrogeological phenomena, and the effort to reset and clean them over time. To address these and other limitations, we have developed an interactive computer simulation of a physical aquifer model called the ParFlow Sandtank. In this gamified interface, users run the simulation using a familiar web-app like interface with sliders and buttons while learning real hydrologic concepts. Our user interface allows participants to dive into the world of hydrology, understanding assumptions about model parameters such as hydraulic conductivity, making decisions about inputs to groundwater aquifer systems such as pumping rates, visualizing outputs such as stream flow, transport, and saturation, and exploring various factors that impact real environmental systems such as climate change. The ParFlow Sandtank has already been used in a variety of educational settings with more than 9,000 users per year, and we feel this emerging educational tool can be used broadly in educational environments and can be scaled-up to provide greater accessibility for students and educators. Here we present the capabilities and workflow of the ParFlow Sandtank, two use cases, and additional tools and custom templates that have been developed to support and enhance the reach of the ParFlow Sandtank.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3