Can the Right Crop Mix Reduce the Water Rebound Effect Following Improvements in Irrigation Efficiency?

Author:

Chai Ying,Zhang Haoran,Ma Zilong,Pan Su,Zhou Jieqi

Abstract

Water rebound has been recognized as a significant issue that reduces the effectiveness of irrigation efficiency improvement policies aimed at water conservation. However, there is an absence of quantitative analysis of the impact of crop mixes on the water rebound effect, and studies focusing on the heterogeneous effects of various climatic regions are scarce. Thus, this study aims to explore the effects of water rebound on irrigation efficiency improvements from the perspectives of crop mix and climatic region. First, we construct a double-layered moderating effect framework to incorporate the two interactive factors of crop mix and climatic region combined with two rebound mechanisms, cost reduction and increased revenue. Second, we conduct empirical analyses to test three hypotheses based on provincial-level data from 2003 to 2017 in China, which provides a unique empirical context wherein changes in the crop mix depend on factors other than the water-use policy. This paper takes advantage of the implementation of Rural Land Contracting Law since 2003 and Water Conservancy Key Counties Construction Program since 2009 to identify the effects of water rebound on irrigation efficiency improvements from the perspectives of crop mix and climatic region. We found that the water rebound effect was about 67.72%. Crop mixes involving higher proportions of non-grain crops were associated with higher levels of water conservation and less water rebound. Furthermore, non-grain crops in humid regions were more likely to experience water rebound than those in non-humid regions. Thus, given China's national strategy of food security, reducing the proportion of non-grain crops in humid regions will help to sustain agricultural water resources and conserve the environment.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Reference52 articles.

1. Environmental rethinking of wastewater drains to manage environmental pollution and alleviate water scarcity;Abd-Elaty;Nat. Hazards,2022

2. Modernization of irrigation systems in Spain: review and analysis for decision making;Alarcon;Int. J. Water Resour. Dev.,2016

3. Canberra, ACTDepartment of the House of RepresentativesInquiry Into Water Use Efficiency in Australian Agriculture2017

4. Do water-saving technologies improve environmental flows?;Batchelor;J. Hydrol.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3