Seasonality in Environmental Conditions Drive Variation in Plankton Communities in a Shallow Tropical Lake

Author:

Kondowe Benjamin N.,Masese Frank O.,Raburu Phillip O.,Singini Wales,Sitati Augustine,Walumona Riziki Jacques

Abstract

Factors influencing the spatio-temporal dynamics of plankton communities in small tropical lakes are not well-understood. This study assessed plankton communities in response to spatial (six sampling sites) and seasonal (wet vs. dry seasons) changes in environmental variables in Lake Kanyaboli, a small satellite lake on the northern shores of Lake Victoria, Kenya. Water quality variables, including pH, conductivity (EC), dissolved oxygen (DO), temperature, Secchi depth (SD), nitrates (NO3-), nitrites (NO2-), ammonium (NH4+), soluble reactive phosphorus (SRP), total nitrogen (TN), total phosphorus (TP), and chlorophyll-a(Chl-a), were monitored monthly at six sites spread throughout the lake for 1 year. Phytoplankton and zooplankton samples were collected and analyzed for taxon composition and abundance. Two-way ANOVA showed no significant interaction between site and season for all variables. Likewise, there were no significant spatial differences for all variables except Chl-a. At-test showed significant seasonal differences in SD, DO,NH4+,NO3-,NO2-, and TN. Thirty phytoplankton genera were identified belonging to Bacillariophyceae, Chlorophyceae, Cryptophyceae, Cyanophyceae, Euglenoidae, Trebouxiophyceae, and Zygnematophyceae, with Chlorophyceae being the most dominant (42.30%). Zooplankton comprised of 15 genera, belonging to Copepoda (55.4%), Rotifera (27.9%), and Cladocera (16.7%). Two-way ANOVA for plankton abundance showed no significant interaction between site and season, but there were significant differences in community composition between the wet and dry seasons. Canonical correspondence analysis identified water clarity (Secchi depth) and concentrations of dissolved fractions of nitrogen and phosphorus as the major water quality variables driving variation in the composition of plankton communities in the lake. This study showed that seasonality was a major driver of changes in plankton community composition between dry and wet seasons through changes in the concentrations of nutrients (NH4+,NO3-,NO2-, TN, and TP). Lake Kanyaboli's phytoplankton community indicated a non-equilibrial state, perhaps due to short residence times of water, especially during the wet season, and dense macrophytes fringing the lake that increase nutrient uptake and limit the dominance of select phytoplankton species. This study shows the importance of long-term studies covering dry and wet seasons to understand the dynamics of plankton communities and their drivers in small tropical waterbodies to inform management and conservation.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Reference137 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3