Temporal and Spatial Patterns of Groundwater Recharge Across a Small Watershed in the California Sierra Nevada Mountains

Author:

Meadows Christina,Hagedorn Benjamin

Abstract

Mountain-block groundwater recharge is a crucial freshwater source in arid to semiarid watersheds worldwide; yet its quantification is difficult due to (1) hydrogeological heterogeneities especially in bedrock-dominated regimes, (2) drastic altitudinal ranges in climate, land use and land cover, and (3) mixing with deep groundwater derived from adjacent basins (i.e., interbasin groundwater flow). In this study, we test the utility of soil water-balance (SWB) modeling to quantify mountain-block groundwater recharge in the South Fork Tule River watershed in the California Sierra Nevada Mountains. This 1,018 km2 watershed is instrumented with 3 USGS stream gages that allow for the development of a refined recharge (i.e., baseflow) calibration dataset via multi-objective optimization-based hydrograph separation. The SWB model was used to compute groundwater recharge and other water balance components at a daily time step using a 30-m grid cell size for a 40-year (1980–2019) study period. Mean annual recharge and runoff were estimated at 3.7 in/yr (3.0 m3/s) and 1.4 in/yr (1.2 m3/s), respectively, with modified Nash Sutcliffe Efficiency indices of 0.61 between baseflow and SWB-derived recharge, and 0.90 between hydrograph separation- and SWB-derived runoff. There is a strong correlation between annual recharge and rainfall (Pearson R = 0.95, p < 0.001) which attests to short residence times in the unsaturated zone and the immediate impact of droughts in 1990, 1999, and 2013. However, results of a modified Mann-Kendall trend analysis indicate no directional trends in recharge or runoff throughout the study period. Parameter sensitivity analyses reveal a persistent overprediction of recharge over baseflow that is particularly pronounced in the upper reaches of the watershed. This is likely related to the SWB model only considering soil characteristics at the surface and not simulating the fate of potential recharge below the root zone where it may be impeded from reaching the aquifer by shallow, impermeable bedrock. This limitation should be considered carefully for future water supply projections in this and comparable bedrock-dominated settings.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

General Medicine

Reference98 articles.

1. Bedrock infiltration and mountain block recharge accounting using chloride mass balance;Aishlin;Hydrol. Processes,2011

2. Evapotranspiration estimates in extremely arid areas;Al-Sha'lan;J. Irrigat. Drainage Eng,1987

3. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, CA;Anderson;J. Hydrol,2005

4. BarkerD. BeuerleinJ. DorranceA. EckertD. EisleyB. HammondR. Ohio Agronomy Guide, 14th Edn, Ohio State University Extension Bulletin, Vol. 472, 1582005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3