Estimating Hydrothermal Properties and High-Frequency Fluxes From Geophysical Measurements in the Hyporheic Zone

Author:

Cucchi Karina,Flipo Nicolas,Rivière Agnès,Rubin Yoram N.

Abstract

Located in the critical zone at the intersection between surface water and groundwater, hyporheic zones (HZ) host a variety of hydrological, biological and biogeochemical processes regulating water availability and quality and sustaining riverine ecosystems. However, difficulty in quantifying water fluxes along this interface has limited our understanding of these processes, in particular under dynamic flow conditions where rapid variations can impact large-scale HZ biogeochemical function. In this study, we introduce an innovative measurement assimilation chain for determining uncertainty-quantified hydraulic and thermal HZ properties, as well as associated uncertainty-quantified high-frequency water fluxes. The chain consists in the assimilation of data collected with the LOMOS-mini geophysical device with a process-based, Bayesian approach. The application of this approach on a synthetic case study shows that hydraulic and thermal HZ properties can be estimated from LOMOS-mini measurements, their identifiability depending on the Peclet number – summarizing the hydrological and thermal regime. Hydraulic conductivity values can be estimated with precision when greater than ~10−5m · s−1 when other HZ properties are unknown, with decreasing uncertainty when other HZ properties are known prior to starting the LOMOS-mini measurement assimilation procedure. Water fluxes can be estimated in all regimes with varying accuracy, highest accuracy is reached for fluxes greater than ~10−6m · s−1, except under highly conductive exfiltration regimes. We apply the methodology on in situ datasets by deriving uncertainty-quantified HZ properties and water fluxes for 2 data points collected during field campaigns. This study demonstrates that the LOMOS-mini monitoring technology can be used as complete and stand-alone sampling solution for quantifying water and heat exchanges under dynamic exchange conditions (time resolution < 15 min).

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3