Classification of Decisions of the Court of Jurisdictional Disputes of Türkiye Using Machine Learning Methods

Author:

GÖRENTAŞ Muhammed Burak1ORCID,UÇKAN Taner2ORCID,BAYRAM ARLI Nuran3ORCID

Affiliation:

1. VAN YUZUNCU YIL UNIVERSITY

2. VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ

3. Bursa Uludağ Üniversitesi

Abstract

Makine öğrenmesi ve doğal dil işleme alanındaki gelişmelerle birlikte her alanda olduğu gibi hukuk alanında da çalışmalar yapılmaya başlanmıştır. Makine öğrenmesi ve doğal dil işleme teknolojileri, hukuk alanındaki yazılı metinlerin otomatik olarak analiz edilmesine ve sınıflandırılmasına yardımcı olmuştur. Bu sayede, avukatların ve yargıçların büyük miktarda yasal metni hızlı bir şekilde okuyup anlamaları mümkün hale gelmiş ayrıca, makine öğrenmesi ve doğal dil işleme teknolojileri, hukuk alanında karar verme sürecinde de kullanılmaya başlanmıştır. Bu teknolojiler, hukuk davalarının sonuçlarını tahmin etmek ve olası sonuçları değerlendirmek için kullanılmış bunun yanı sıra, makine öğrenmesi ve doğal dil işleme teknolojileri, hukuk alanında daha önceki kararların analiz edilmesi ve bu kararlardan öğrenme yapılması için de kullanılmıştır. Bu sayede, benzer davalar için önceden verilmiş kararlar incelenerek yeni davalar için fikir yürütülebilir hale gelmiştir. Bu çalışmada da Uyuşmazlık Mahkemesinin olumsuz görev uyuşmazlığı davalarında vermiş olduğu kararlar adli ve idari olmak üzere iki sınıfa ayrılarak tahmin edilmeye çalışılmıştır. Doğal dil işleme yöntemleriyle veri ön işleme ve ardından TF-IDF öznitelik çıkarımı yapılan mahkeme kararları makine diline çevrilmiş ardından makine öğrenmesi algoritmalarından lojistik regresyon, destek vektör makineleri, karar ağaçları ve rassal orman algoritmalarıyla sınıflandırılmıştır. Kullanılan sınıflandırma tekniklerinin performans değerlendirmeleri yapılarak mahkeme kararları %87 oranında doğruluk değerleri ile tahmin edilmiştir. Çalışma sonuçlarının bilim dünyası ile birlikte hukuk aktörleri için de olumlu sonuçları olacağı görülmektedir.

Publisher

Van Yuzuncu Yil University

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3