Finansal Zaman Serilerinin Derin Öğrenme Algoritmaları ile Tahminlenmesi

Author:

PAMUKÇU Dilara Elize1ORCID,AYGÜL Yeşim2ORCID,UĞURLU Onur1ORCID

Affiliation:

1. İZMİR BAKIRÇAY ÜNİVERSİTESİ

2. EGE ÜNİVERSİTESİ

Abstract

Stock market index data, foreign currency, and gold have an important place in financial time series. Therefore, value or direction of movement estimation studies on this subject attracts the attention of both investors and researchers. This study aims to estimate the daily value of the US Dollar, Gold, and Borsa Istanbul (XU) 100 index using deep learning methods: Recurrent Neural Networks and Long-Short-Term Memory. A data set consisting of 2280 business days between 2013-2022, which includes the date, US Dollar, Gold, and XU 100 closing data, was used in the study. Mean absolute error, mean square error, root mean square error, and coefficient of determination were used to evaluate the performance of the developed prediction models. When the results were examined, it was seen that the Long-Short-Term Memory algorithm performs better than the Recurrent Neural Network algorithm and achieved a determination coefficient value of over 95% for the US Dollar, Gold, and XU 100 index. Moreover, the findings obtained in the study indicate that deep learning algorithms can show high prediction performance on financial time series without using extra independent variables.

Publisher

Van Yuzuncu Yil University

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Reference22 articles.

1. Akcan, A., & Kartal, C. (2011). İMKB sigorta endeksini oluşturan şirketlerin hisse senedi fiyatlarının yapay sinir ağları ile tahmini. Muhasebe ve Finansman Dergisi, 51, 27-40.

2. Akşehir, Z. D., & Kılıç, E. (2019). Makine öğrenmesi teknikleri ile banka hisse senetlerinin fiyat tahmini. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi, 12(2), 30-39.

3. Alpay, Ö. (2020). LSTM mimarisi kullanarak USD/TRY fiyat tahmini. Avrupa Bilim ve Teknoloji Dergisi, Özel Sayı, 452-456. doi:10.31590/ejosat.araconf59

4. Altunbaş, C. (2021). Derin öğrenme ile hisse senedi piyasası tahmini. (MSc), Aydın Adnan Menderes Üniversitesi, Sosyal Bilimler Enstitüsü, Aydın, Türkiye.

5. Arslankaya, S., & Toprak, Ş. (2021). Makine öğrenmesi ve derin öğrenme algoritmalarını kullanarak hisse senedi fiyat tahmini. International Journal of Engineering Research and Development, 13(1), 178-192. doi:10.29137/umagd.771671

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3