Probing the Physics of Molecular Clouds in Spiral Galaxies NGC 5055 and NGC 3627

Author:

Eser Sulu Hülya1ORCID,Topal Selçuk2ORCID

Affiliation:

1. VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ

2. Van Yuzuncu Yil University

Abstract

Although galaxies can be grouped in a few categories in terms of morphology, they have remarkably different intrinsic properties. Spiral galaxies host substantial amounts of molecular gas and have ongoing star formation activity with respect to elliptical galaxies lacking star formation. Molecular emission lines are used to probe the internal properties of molecular gas clouds where stars are born and die. Carbon monoxide (CO) is easily detectable in the interstellar medium (ISM) of galaxies. In this research, we probe the physics of the gas clouds at multiple positions in disc galaxies NGC 5055 (M63) and NGC 3627 (M66) using four CO transitions and their line ratios. 12CO(J=1-0) is the brightest across the disc of both galaxies compared to the other lines, i.e., 12CO(J=2-1, J=3-2) and 13CO(J=1-0). The CO intensities show a decrease from the center of the galaxies to the outskirts. However, NGC 3627 shows a rather irregular decrease pattern compared to NGC 5055. The CO line ratios show an increase up to a distance from the center and start to decrease. Although NGC 5055 shows a similar variation in the line ratios on each side of the disc, NGC 3627 has an opposite trend on either side. Therefore, the ISM could have different temperatures, opacity, densities, and levels of star formation in different regions of the galaxy’s disc. Our results indicate that the line ratios found at the center of both galaxies are different. The difference could be the result of the bar-driven gas accumulation in the center of NGC 3627. The line ratios in the center of NGC 5055 are within the range found for the centers of other spiral and active galaxies in the literature, but the ratios in the center of NGC 3627 are relatively lower.

Publisher

Van Yuzuncu Yil University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3