Terahertz bow-tie diode based on asymmetrically shaped AlGaN/GaN heterostructures

Author:

Jorudas Justinas,Seliuta Dalius,Minkevičius Linas,Janonis Vytautas,Subačius Liudvikas,Pashnev Daniil,Pralgauskaitė Sandra,Matukas Jonas,Ikamas Kęstutis,Lisauskas Alvydas,Šermukšnis Emilis,Liberis Juozapas,Kovalevskij Vitalij,Kašalynas Irmantas

Abstract

Asymmetrical shaping of AlGaN/GaN heterostructures containing a conductive layer of two-dimensional electron gas (2DEG) was used for the development of bow-tie (BT) diodes for room temperature terahertz (THz) detection. Considering operation of the THz BT diode in the unbiased mode as preferable for practical applications, we investigated the diodes with an obvious asymmetry of IV characteristics, which was found to be more pronounced with the decrease of an apex width, resulting in the sensitive THz detection. A nonuniform heating of carriers in a metalized leaf of the BT diode was attributed as the main mechanism that caused the rectification of THz waves. The responsivity and noise-equivalent power (NEP) at the fundamental antenna frequency of 150 GHz were up to 4 V/W and 2 nW/√Hz, respectively. Such high sensitivity of BT diodes allowed us to measure for the first time the response spectrum of the asymmetric BT antenna demonstrating fundamental and higher order resonances in good agreement with finite-difference time-domain simulation data in a broad spectrum range. The detailed investigation of the lowand high-frequency noise characteristics of AlGaN/GaN BT diodes revealed that only thermal noise needs to be considered for the unbiased operation, the value of which was relatively low due to a high density of 2DEG enabling low resistivity values. Moreover, we observed that the responsivity of BT diode scales with its resistance, revealing that tapering of the diode apex below a few microns could be ineffective in applications which require low NEP values.

Publisher

Lithuanian Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3