THz properties of grating-gate plasmonic crystals

Author:

Sai Pavlo,Dub Maksym,Korotyeyev Vadym,Kukhtaruk Serhii,Cywinski Grzegorz,Knap Wojciech

Abstract

This study reviews recent advances in the modern field of terahertz plasmonics concerning the control of resonant properties of grating-gate plasmonic crystal structures. Particularly, we conducted both experimental and theoretical investigations of AlGaN/GaN grating-gate structures with a focus on investigations of the resonant structure of transmission spectra associated with plasmon excitations in two-dimensional electron gas at different modulation degree of concentration profiles. Two distinct resonant phases of the plasmonic crystal structure were analyzed. The first one, the delocalized phase, is observed in the case of a small modulation degree of electron gas. In this phase, we found that plasmonic resonant absorption of incident radiation occurs across the entire grating-gate structure, with domination in the gated regions of the electron gas. In contrast, the second phase, the localized one, is realized at a strong modulation of the electron concentration profiles when the gated regions of the electron gas are completely depleted. Here, plasmon resonances are characterized by the spatial localization of absorption of incident radiation exclusively within the ungated regions of the electron gas. Moreover, in the localized phase, we observed the unexpected blue shift of plasmon resonant frequency with an increase of gate voltage. This observation was explained by the result of ‘edge gating effect’ and additional shrinking of the concentration profile of the electron gas in the ungated region. We demonstrate that the correct description of both phases requires rigorous electrodynamic simulations and cannot be achieved solely in the frameworks of simplified single-mode or single-cavity models.

Publisher

Lithuanian Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3