Modeling and Experimental Study of the Inrush Current of a High-Temperature Superconducting Transformer

Author:

Manusov Vadim,Ivanov Dmitry,Ivanova Elena

Abstract

Inrush current in high-temperature superconducting (HTS) transformers is a little-studied phenomenon. After connecting to the power grid, a current flow through the windings which exceeding the critical current value of the superconducting tape. It may cause significant overheating and thermal damage of winding. The purpose of the study is to develop a mathematical model for calculating inrush current pulses in a HTS transformer and its verification by physical experiments. To achieve the goal of the study, a mathematical model has been developed that accurately represents the electromagnetic and thermal transient processes after HTS transformer is turned on at idling or under load. The model considers the critical parameters of the HTS tapes, the process of heating and cooling of the windings, quench characteristics, and the electrical and magnetic parameters of the transformer. Good compliance of the experimental results and mathematical modeling with a deviation of 1.99 % allowed us to verify the model. The most important result is the creation of a mathematical model of the HTS transformer at the moment of connecting to power grid. This model represents the temperature changing of the windings during the loss of superconductivity. The developed model can be used in the analysis and modeling of inrush current in designed and operating HTS transformers for any power. The obtained results are significant for determine the optimal starting characteristics, geometric and electrical parameters of HTS transformers. The proposed methods for reducing the inrush current ensure safe and reliable operation of the HTS transformer when switched on at idling or under load.

Publisher

Technical University of Moldova

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3