Calculation of the Required Power of Electric Motors for Overhead Crane Movement Mechanisms Using the Statistical Method

Author:

Kovalenko V.,Zhuravel O.,Strizhak V.,Iglin S.,Strizhak M.

Abstract

The aim of this study is to determine the functional dependence for the calculation of the re-quired power of the electric motor of the traveling mechanism of the overhead traveling crane on the load capacity and span. The set aim is achieved by solving the following problems: figur-ing out how to calculate the power of the electric motor of the overhead traveling crane mecha-nism by the traditional methodology; selecting constants known from the initial data and varia-bles that require additional calculation; collecting and arranging statistical data - values of varia-bles for overhead cranes of different spans and load capacities; determining regression equa-tions based on statistical data - functions of two variables from the load capacity and span; sub-stituting the equations for the power of the overhead traveling crane mechanism from the load capacity and span. In the process of solving the set tasks, it was found that the greatest difficulty is the determination of static resistance and crane mass. Traditional calculation of these parame-ters requires the use of additional reference data and making design decisions of high responsi-bility. When searching for regression equations, the cubic model is-used, which provides high accuracy and does not overload the equation with summands. The most important result is the derivation of the final expression for determining the motor power as a function of two varia-bles - load capacity and span. The importance of the obtained results is that the proposed meth-od of calculation significantly reduces the time for the selection of the electric motor in the de-sign of a new crane, because there is no need to calculate or select additional parameters that are included in the traditional calculation. The proposed regularity is easier to integrate into comput-er-aided design systems. Since the calculation was based on statistical data of cranes manufac-tured and successfully operating, the probability of erroneous calculation is practically excluded.

Publisher

Technical University of Moldova

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3