Investigation of Powerful Electromagnetic Radiation Influence on Receiving Antenna Systems with Superconducting Protective Devices

Author:

Yeromina N.S., ,Kravchenko I.I.,Kurylov M.N.,Borysenko V.P.,Borysenko T.I.,Kyvliuk V.S.,Kryvosheiev V.V.,Pribyliev Y.B.,Gnusov Y.V.,Radchenko V.V.,Kaliakin S.V., , , , , , , , , ,

Abstract

This work is devoted to the problem of the effect of a powerful ultra-short duration electromagnetic radiation on the superconducting protection device as a load of antenna-feeder circuit of radioelectronic systems. The above device is used in the monitoring systems of the land surface to the benefit of agriculture, geodesy, mapping, monitoring of land and ocean surfaces, and, also, the atmospheric layers, remote control systems in engineering and industry related branches. This goal was achieved by substantiation of the approach to the description of the arbitrary antenna response to the electromagnetic radiation, using the antenna system frequency response. The most significant result is the offered approach to the relationship determination between the response of the arbitrary antenna to the radiation influence and its characteristics in a radiation mode. The sought relationship determination showed that, such characteristics of the antenna systems are the antenna input impedance and the complex normalized radiation pattern in the radiation mode at an arbitrary frequency. The significance of the results is in obtainment of the analytical relations to estimate the effect of the radiation under consideration on the device that is in superconducting, mixed and normal phase states. The peculiarity of the obtained results makes it possible to consider the antenna system coordination degree of the protection device based on superconducting thin film. Conversion of the radiation energy into the induced currents’ energy that is the basis for selection and structural calculation of protection devices of the radio electronic facilities against powerful electromagnetic radiation build upon microstrip transmission lines.

Publisher

Institute of Power Engineering

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3