Study of Electromagnetic and Thermal Transients in a High-temperature Superconducting Transformer during a Short Circuit

Author:

Manusov V.Z.,Ivanov D.M.

Abstract

Today, high-temperature superconducting (HTS) current limiters and transformers allow to limit the surge short circuit current during failure without negatively affecting on the power grid complex at the normal operation mode. However, the transition of a superconductor to a resistive state at the moment of current limitation can cause significant heat generation, which can destroy the transformer windings. The research goal is to provide optimal technical characteristics of the HTS transformer to achieve effective short circuit current limitation and prevent thermal breakdown of its windings. To achieve this goal, a mathematical model of a HTS transformer was developed. The presented method considers the material type and geometry of the superconducting tape, the critical parameters of the superconductor (current and temperature), the parameters of the cryogenic liquid, dependence of the resistance and heat capacity of the HTS tape layers on temperature. The simulation model was created in the Matlab/Simulink software. The most important result is the possibility of obtaining optimal electrical and thermal parameters of the HTS transformer windings during the short circuit current limitation, as well as ensuring the thermal stability of the superconducting tape at the quench moment. The obtained results are significant in the design and operation of HTS transformers. For efficient and safe operation in the current-limiting mode, it is necessary to take into account heat generation on the transformer windings. It is important for the superconductor returning to the superconducting state without causing significant overheating of the windings.

Publisher

Technical University of Moldova

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3